Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: covidwho-1099357

ABSTRACT

Due to the lack of efficient therapeutic options and clinical trial limitations, the FDA-approved drugs can be a good choice to handle Coronavirus disease (COVID-19). Many reports have enough evidence for the use of FDA-approved drugs which have inhibitory potential against target proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we utilized a structure-based drug design approach to find possible drug candidates from the existing pool of FDA-approved drugs and checked their effectiveness against the SARS-CoV-2. We performed virtual screening of the FDA-approved drugs against the main protease (Mpro) of SARS-CoV-2, an essential enzyme, and a potential drug target. Using well-defined computational methods, we identified Glecaprevir and Maraviroc (MVC) as the best inhibitors of SARS-CoV-2 Mpro. Both drugs bind to the substrate-binding pocket of SARS-CoV-2 Mpro and form a significant number of non-covalent interactions. Glecaprevir and MVC bind to the conserved residues of substrate-binding pocket of SARS-CoV-2 Mpro. This work provides sufficient evidence for the use of Glecaprevir and MVC for the therapeutic management of COVID-19 after experimental validation and clinical manifestations.


Subject(s)
Betacoronavirus/enzymology , Maraviroc/pharmacology , Protease Inhibitors/pharmacology , Quinoxalines/pharmacology , Sulfonamides/pharmacology , Aminoisobutyric Acids , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Computer Simulation , Cyclopropanes , Drug Evaluation, Preclinical/methods , Lactams, Macrocyclic , Leucine/analogs & derivatives , Maraviroc/chemistry , Maraviroc/metabolism , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Quinoxalines/chemistry , Quinoxalines/metabolism , SARS-CoV-2 , Sulfonamides/chemistry , Sulfonamides/metabolism
2.
Antiviral Res ; 182: 104902, 2020 10.
Article in English | MEDLINE | ID: covidwho-702902

ABSTRACT

Cenicriviroc (CVC) is a small-molecule chemokine receptor antagonist with highly potent and selective anti-human immunodeficiency virus type 1 (HIV-1) activity through antagonizing C-C chemokine receptor type 5 (CCR5) as a coreceptor of HIV-1. CVC also strongly antagonizes C-C chemokine receptor type 2b (CCR2b), thereby it has potent anti-inflammatory and immunomodulatory effects. CVC is currently under clinical trials in the patients for treatment of nonalcoholic steatohepatitis, in which immune cell activation and dysregulation of proinflammatory cytokines play an important role in its pathogenesis. In this study, CVC was examined for its inhibitory effect on the replication of SARS-CoV-2, the causative agent of COVID-19, in cell cultures and found to be a selective inhibitor of the virus. The 50% effective concentrations of CVC were 19.0 and 2.9 µM in the assays based on the inhibition of virus-induced cell destruction and viral RNA levels in culture supernatants of the infected cells, respectively. Interestingly, the CCR5-specific antagonist maraviroc did not show any anti-SARS-CoV-2 activity. Although the mechanism of SARS-CoV-2 inhibition by CVC remains to be elucidated, CCR2b does not seem to be its target molecule. Considering the fact that the regulation of excessive immune activation is required to treat COVID-19 patients at the late stage of the disease, CVC should be further pursued for its potential in the treatment of SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/drug effects , Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Imidazoles/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Receptors, CCR2/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19 , Chlorocebus aethiops , Humans , Maraviroc/pharmacology , Pandemics , SARS-CoV-2 , Sulfoxides , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL